Publications

Jump to:

20252024202320222021202020192018201720162015201420132012201120102009

2025

  1. Lee M-S, Lin EC-Y, Sivapatham A, Leiferman EM, Jiao H, Lu Y, et al. Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model. Stem Cell Res Ther. 2025;16. doi:10.1186/s13287-025-04215-7
  2. Lin EC-Y, Davis MP, Lee M-S, Ma G, Xu W, Chang Y-I, et al. Advancing immunomodulatory functions in mesenchymal stem/stromal cells through targeting the GATA6-mediated pathway. Cytotherapy. 2025;27: 85–97. doi:10.1016/j.jcyt.2024.08.001

2024

  1. Ma G, Gao A, Chen J, Liu P, Sarda R, Gulliver J, et al. Modeling high-risk Wilms tumors enables the discovery of therapeutic vulnerability. Cell Rep Med. 2024;5: 101770. doi:10.1016/j.xcrm.2024.101770
  2. Fontana G, Nemke B, Lu Y, Chamberlain C, Lee JS, Choe JA, et al. Local delivery of TGF-B1-mRNA decreases fibrosis in osteochondral defects. Bioact Mater. 2024;45: 509–519. doi:10.1016/j.bioactmat.2024.11.033

2023

  1. Dottori M, Li W-J, Minchiotti G, Rosa A, Sangiuolo F. Editorial: Reviews in induced pluripotent stem cells. Front Cell Dev Biol. 2023;11: 1197891. doi:10.3389/fcell.2023.1197891
  2. Lee MS, Sivapatham A, Leiferman EM, Jiao H, Lu Y, Nemke BW, et al. Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model. doi:10.1101/2023.07.25.550409

2022

  1. Jiao H, Lee M-S, Sivapatham A, Leiferman EM, Li W-J. Author Correction: Epigenetic regulation of BAF60A determines efficiency of miniature swine iPSC generation. Sci Rep. 2022;12: 10193. doi:10.1038/s41598-022-14878-4
  2. Chan NT, Lee M-S, Wang Y, Galipeau J, Li W-J, Xu W. CTR9 drives osteochondral lineage differentiation of human mesenchymal stem cells via epigenetic regulation of BMP-2 signaling. Sci Adv. 2022;8: eadc9222. doi:10.1126/sciadv.adc9222

2021

  1. Yuan H, Li X, Lee M-S, Zhang Z, Li B, Xuan H, et al. Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application. Int J Biol Macromol. 2021;170: 248–260. doi:10.1016/j.ijbiomac.2020.12.152
  2. Jiao H, Walczak BE, Lee MS, Lemieux ME, Li WJ. GATA6 regulates aging of human mesenchymal/stromal cells. Stem Cells. 2021;39: 62–77. doi:10.1002/stem.3297
  3. Grondin MM, Liu F, Vignos MF, Samsonov A, Li W-J, Kijowski R, et al. Bi-component T2 mapping correlates with articular cartilage material properties. J Biomech. 2021;116: 110215. doi:10.1016/j.jbiomech.2020.110215
  4. Pei YA, Dong Y, He T-C, Li W-J, Toh WS, Pei M. Editorial: Extracellular vesicle treatment, epigenetic modification and cell reprogramming to promote bone and cartilage regeneration. Front Bioeng Biotechnol. 2021;9: 678014. doi:10.3389/fbioe.2021.678014
  5. Lee M-S, Stebbins MJ, Jiao H, Huang H-C, Leiferman EM, Walczak BE, et al. Comparative evaluation of isogenic mesodermal and ectomesodermal chondrocytes from human iPSCs for cartilage regeneration. Sci Adv. 2021;7: eabf0907. doi:10.1126/sciadv.abf0907
  6. Walczak BE, Jiao H, Lee M-S, Li W-J. Reprogrammed synovial fluid-derived mesenchymal stem/stromal cells acquire enhanced therapeutic potential for articular cartilage repair. Cartilage. 2021;13: 530S–543S. doi:10.1177/19476035211040858

2020

  1. Weishar R, Lee M-S, Fontana G, Hematti P, Li W-J. Endothelin-1 reduces catabolic activity of human mesenchymal stem/stromal cells during chondro- and osteo-lineage differentiation. Biochem Biophys Res Commun. 2020;529: 180–185. doi:10.1016/j.bbrc.2020.06.003

2019

  1. Lee MS, Wang J, Yuan H, Jiao H, Tsai TL, Squire MW, et al. Endothelin-1 differentially directs linage specification of adipose- and bone marrow-derived mesenchymal stem cells. FASEB J. 2019;33: 996–1007. doi:10.1096/fj.201800614R
  2. Wang JF, Lee M-S, Tsai T-L, Leiferman EM, Trask DJ, Squire MW, et al. Bone morphogenetic protein-6 attenuates type 1 diabetes mellitus-associated bone loss. Stem Cells Transl Med. 2019;8: 522–534. doi:10.1002/sctm.18-0150
  3. Stebbins MJ, Gastfriend BD, Canfield SG, Lee M-S, Richards D, Faubion MG, et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci Adv. 2019;5: eaau7375. doi:10.1126/sciadv.aau7375
  4. Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopedics. J Orthop Transl. 2019;17: 73–81. doi:10.1016/j.jot.2019.03.001
  5. Lu J, Chamberlain CS, Ji M-L, Saether EE, Leiferman EM, Li W-J, et al. Tendon-to-bone healing in a rat extra-articular bone tunnel model: A comparison of fresh autologous bone marrow and bone marrow-derived mesenchymal stem cells. Am J Sports Med. 2019;47: 2729–2736. doi:10.1177/0363546519862284

2018

  1. Jiang Y-C, Jiao H-L, Lee M-S, Wang T, Turng L-S, Li Q, et al. Endogenous biological factors modulated by substrate stiffness regulate endothelial differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2018;106: 1595–1603. doi:10.1002/jbm.a.36362

2017

  1. Tsai T-L, Li W-J. Identification of bone marrow-derived soluble factors regulating human mesenchymal stem cells for bone regeneration. Stem Cell Reports. 2017;8: 387–400. doi:10.1016/j.stemcr.2017.01.004
  2. Zhou Y, Tsai T-L, Li W-J. Strategies to retain properties of bone marrow-derived mesenchymal stem cells ex vivo. Ann N Y Acad Sci. 2017;1409: 3–17. doi:10.1111/nyas.13451
  3. Ishihara S, Inman DR, Li WJ, Ponik SM, Keely RJ. Mechano-signal transduction of mesenchymal stem cells induces mammary cancer cell proliferation, but inhibits metastasis, via prosaposin secretion. Cancer Res. 2017;77: 6179–6189. doi:10.1158/0008-5472.CAN-17-0569

2016

  1. Zhou Y, Zimber M, Yuan H, Naughton GK, Fernan R, Li W-J. Effects of human fibroblast-derived extracellular matrix on mesenchymal stem cells. Stem Cell Rev. 2016;12: 560–572. doi:10.1007/s12015-016-9671-7
  2. Yuan H, Zhou Y, Lee M-S, Zhang Y, Li W-J. A newly identified mechanism involved in regulation of human mesenchymal stem cells by fibrous substrate stiffness. Acta Biomater. 2016;42: 247–257. doi:10.1016/j.actbio.2016.06.034
  3. Jin E, Lee PT, Jeon WB, Li W-J. Effects of elastin-like peptide on regulation of human mesenchymal stem cell behavior. Regen Eng Transl Med. 2016;2: 85–97. doi:10.1007/s40883-016-0015-6
  4. Chaudhary R, Lee MS, Mubyana K, Duenwald-Kuehl S, Kaiser JL, Vanderby J, et al. Advanced quantification imaging and biomechanical analyses of periosteal fibers in accelerated bone growth. Bone. 2016;92: 201–213. doi:10.1016/j.bone.2016.08.021
  5. Lee PT, Li WJ. Chondrogenesis of embryonic stem cell-derived mesenchymal stem cells induced by TGFB1 and BMP7 through increased TGFB receptor expression and endogenous TGFB1 production. J Cell Biochem. 2016;118: 172–181. doi: 10.1002/jcb.25623

2015

  1. Handorf AM, Chamberlain CS, Li WJ. Endogenously-produced Indian hedgehog regulates TGFB-driven chondrogenesis of human bone marrow stromal/stem cells. Stem Cells Dev. 2015;24: 995–1007. doi:10.1089/scd.2014.0266
  2. Handorf AM, Zhou Y, Halanski MA, Li W-J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11: 1–15. doi:10.1080/15476278.2015.1019687
  3. Tsai T-L, Wang B, Squire MW, Guo L-W, Li W-J. Endothelial cells direct human mesenchymal stem cells for osteo- and chondro-lineage differentiation through endothelin-1 and AKT signaling. Stem Cell Res Ther. 2015;6: 88. doi:10.1186/s13287-015-0065-6
  4. Jing X, Mi JE, Li HY, Peng WJ, Turng XF. Hierarchically decorated electrospun poly(-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. J Mater Sci. 2015;50: 4174–4186. doi:10.1007/s10853-015-8933-0
  5. Chiu C-Y, Tsai T-L, Vanderby R Jr, Bradica G, Lou S-L, Li W-J. Osteoblastogenesis of mesenchymal stem cells in 3-D culture enhanced by low-intensity pulsed ultrasound through soluble receptor activator of nuclear factor kappa B ligand. Ultrasound Med Biol. 2015;41: 1842–1852. doi:10.1016/j.ultrasmedbio.2015.03.017

2014

  1. Saether EE, Chamberlain CS, Leiferman EM, Kondratko-Mittnacht JR, Li WJ, Brickson SL, et al. Enhanced medial collateral ligament healing using mesenchymal stem cells: dosage effects on cellular response and cytokine profile. Stem Cell Rev. 2014;10: 86–96. doi:10.1007/s12015-013-9479-7
  2. Handorf AM, Li W-J. Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. J Cell Physiol. 2014;229: 162–171. doi:10.1002/jcp.24428
  3. Palumbo S, Tsai T-L, Li W-J. Macrophage migration inhibitory factor regulates AKT signaling in hypoxic culture to modulate senescence of human mesenchymal stem cells. Stem Cells Dev. 2014;23: 852–865. doi:10.1089/scd.2013.0294
  4. Tsai TL, Nelson BC, Anderson PA, Zdeblick TA, Li WJ. Intervertebral disc and stem cells co-cultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Spine J. 2014;14: 2127–2140. doi:10.1016/j.spinee.2013.11.062
  5. Czaplewski SK, Tsai TL, Duenwald-Kuehl SE, Vanderby R, Li WJ. Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided nanofibrous scaffolds. Biomaterials. 2014;35: 6907–6917. doi: 10.1016/j.biomaterials.2014.05.006
  6. Brown PT, Squire MW, Li W-J. Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Cell Tissue Res. 2014;358: 149–164. doi:10.1007/s00441-014-1926-5
  7. Mi H-Y, Palumbo S, Jing X, Turng L-S, Li W-J, Peng X-F. Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size. J Biomed Mater Res B Appl Biomater. 2014;102: 1434–1444. doi:10.1002/jbm.b.33122

2013

  1. Tsai T-L, Manner PA, Li W-J. Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthritis Cartilage. 2013;21: 368–376. doi:10.1016/j.joca.2012.11.001
  2. Barber JG, Handorf AM, Allee TJ, Li W-J. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng Part A. 2013;19: 1265–1274. doi:10.1089/ten.tea.2010.0538
  3. Brown PT, Handorf AM, Jeon WB, Li W-J. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des. 2013;19: 3429–3445. doi:10.2174/13816128113199990350
  4. Palumbo S, Li W-J. Osteoprotegerin enhances osteogenesis of human mesenchymal stem cells. Tissue Eng Part A. 2013;19: 2176–2187. doi:10.1089/ten.TEA.2012.0550
  5. Pflum ZE, Palumbo SL, Li W-J. Adverse effect of demineralized bone powder on osteogenesis of human mesenchymal stem cells. Exp Cell Res. 2013;319: 1942–1955. doi:10.1016/j.yexcr.2013.05.020

2012

  1. Cui ZX, Nelson B, Peng YY, Li K, Pilla S, Li WJ, et al. Fabrication and characterization of injection molded poly(epsilon-caprolactone) and poly(epsilon-caprolactone)/hydroxyaptite scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2012;32: 1674–1681. doi: 10.1016/j.msec.2012.04.064
  2. Koepsel JT, Brown PT, Loveland SG, Li W-J, Murphy WL. Combinatorial screening of chemically defined human mesenchymal stem cell culture substrates. J Mater Chem. 2012;22: 19474–19481. doi:10.1039/C2JM32242K

2011

  1. Handrof AM, Li WJ. Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One. 2011;6. doi:10.1371/journal.pone.0022887
  2. Giri J, Li W-J, Tuan RS, Cicerone MT. Stabilization of proteins by nanoencapsulation in sugar-glass for tissue engineering and drug delivery applications. Adv Mater. 2011;23: 4861–4867. doi:10.1002/adma.201102267

2010

  1. Barber JG, Li W-J. Nanostructured scaffolds for biology and tissue engineering. Nano Life. 2010;01: 109–120. doi:10.1142/s1793984410000092

2009

  1. Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li W-J, Tuan RS, et al. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev. 2009;15: 171–193. doi:10.1089/ten.TEB.2008.0652
  2. Baker BM, Handorf AM, Ionescu LC, Li W-J, Mauck RL. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices. 2009;6: 515–532. doi:10.1586/erd.09.39